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A methodology, called large-wave simulation (LWS), is presented for the numer-
ical simulation of free-surface flows past the appearance of spilling breakers. LWS
is designed to resolve only the large, energy-carrying scales of the flow and model
the effect of the subgrid, small-wavelength scales of the flow spectrum. This part
of the spectrum includes the characteristic frothy whitecaps associated with spilling
breakers. Modeling in LWS is based on the consistent application of spatial fil-
tering on both the velocity field and the free-surface elevation. The subgrid scale
(SGS) effect is modeled by two sets of stresses: (i) the eddy SGS stresses, which
are identical to the ones arising in large-eddy-simulation of flows without a free
surface, and (ii) the wave SGS stresses, which incorporate the free-surface effect.
Both SGS stresses are modeled by eddy-viscosity models with constant coefficients.
The methodology is applied on two free-surface flows: (i) the interaction of a plane
gravity wave with a surface wake layer, and (ii) the nonlinear evolution of a surface
shear layer instability. A priori and a posteriori tests show good agreement between
the proposed model and actual SGS stresses, while LWS of both flows successfully
continue past the breaking point as opposed to corresponding direct numerical simu-
lations. For the first flow, LWS predicts the postbreaking appearance of a recirculating
flow region in the wake of the breaker in qualitative agreement with experimental
observations. c© 2000 Academic Press

1. INTRODUCTION

In several problems, the evolution of free-surface flows leads to the development of
steady or unsteady spilling breaking waves. Unsteady spilling breakers in the ocean are
usually generated by wind or wave/wave interactions and play an important role in air/sea
interactions because they influence momentum and energy transfer from the wave field to
the underlying flow and are the major mechanism of wave energy dissipation [16]. Steady
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spilling breaking waves are usually found in the wave system of ships, where they convert
kinetic and potential energy from the wave system into turbulent kinetic energy in the wakes
of the breakers. These turbulent breaker wakes are momentum deficient, like the wake of a
towed body [2, 7, 8]. Ship breakers are responsible for increased drag on ships [1] and play
an important role in ship detection.

In all these problems, it is important to study the evolution of the wave field and the
underlying turbulent flow past the breaking point. In terms of numerical simulations of
free-surface flows, though, most present methodologies are unable to numerically predict
the evolution of spilling breakers past the breaking point. The development of breaking
waves is associated with a continuous slope increase of the free-surface elevation toward an
infinite slope and overturning, which causes floating-point problems to numerical methods
[5, 6] that require the resolution of all the free-surface flow scales during and after breaking.
The most promising method, so far, has been the surface marker and micro-cell (SMMC)
method by Chenet al. [3] that overcomes problems with free-surface overturnings but is
also based on the requirement that all flow scales are resolved during and after a wave
breaking event.

In this paper, a very different approach is presented that eliminates the need to resolve
all scales for free-surface flows with spilling breakers. It has been observed in experiments
[9] that, in the case of spilling breakers, the lengths and heights of the steep waves in the
breaking region are very small compared to the spatially averaged free-surface elevation
(Fig. 1). This last observation leads to the idea of performing large wave simulations (LWS)
of spilling breakers past the breaking point, where only the large scales (velocity and free-
surface elevation) of the flow are fully resolved while the effect of the small subgrid scales
is modeled without resolving their shape. Therefore, the concept of a large wave simulation
is based on the consistent and systematic introduction of the large-eddy-simulation (LES)
methodology in free-surface flows. For free-surface flows, though, the physics of the prob-
lem is represented not only by the equations of motion but by the unknown shape of the free
boundary as well. Therefore, use of filtering in the equations of motion only, as in LES, is
not consistent with the presence of free-surface waves. The free surface has to participate
in the filtering process.

A major advantage of LWS modeling of breaking is the naturally adaptive character
of the model, since it is activated automatically by the dynamics of the resolved scales
when breaking is about to occur. The close relationship between LWS modeling and LES
modeling and the success of LES modeling in turbulent flows are positive indicators for
the successful use of LWS in turbulent free-surface flows with spilling breakers. A detailed
presentation of the methodology is given in the next two sections, followed by a description
of the numerical method in Section 4. A priori tests of the proposed model are presented in
Section 5, while a posteriori tests and results from two LWS of a free-surface flow past the
breaking point are given in Section 6.

FIG. 1. Free-surface elevation decomposition for a typical spilling breaker. The lengths and heights of the
subgrid scale waves at the breaking region are very small compared to the spatially filtered free-surface elevation ¯η.
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2. LWS FORMULATION

The LWS formulation is based on the consistent application of a spatial filtering operation
on all flow variables (velocities, pressure, free-surface elevation) in order to derive the
equations of motion for the resolved scales. For any variablef , its resolved large-scale
componentf̄ is obtained by

f̄ (x, t) =
∫

V
f (r , t) Ḡ(x, r ;1) dr , (1)

wherex andr are position vectors,t is time,V is the flow domain,̄G is the filter function,
and1 is the size of the smallest resolvable scale. Filtering of the velocity field, for example,
produces the following decomposition of the velocity components,ui , i = 1, 2, 3,

ui = ūi + u′i , (2)

whereūi corresponds to the resolved scale andu′i corresponds to the unresolved subgrid
scale. An equivalent decomposition is performed on the free-surface elevation,η, according
to

η = η̄ + η′, (3)

whereη̄ corresponds to the resolved large-wavelength scale of the free-surface elevation
and η′ corresponds to the unresolved subgrid scale (Fig. 1). The free-surface elevation
is a function of two spatial coordinates, therefore, a two-dimensional filtering operation
equivalent to (1) is used.

For an incompressible, inviscid, free-surface flow, the equations of motion are the conti-
nuity equation

∂ui

∂xi
= 0, (4)

and the Euler equations

∂ui

∂t
+ u j

∂ui

∂xj
= − ∂p

∂xi
, (5)

wheret is time,xi are the cartesian coordinates (x1, x3 are the horizontal coordinates,x2

is positive in the opposite direction of gravity, andx2= 0 corresponds to the undisturbed
free-surface level),ui is the velocity field,p is the dynamic pressure [p= P− (−x2/Fr2)]
defined as the difference between pressure,P, and hydrostatic pressure, and Fr is the Froude
number of the flow. All variables have been rendered dimensionless by a characteristic flow
velocityU∞, and a characteristic length scaleb; therefore, the dimensionless Froude number
is defined as Fr=U∞/

√
gb, whereg is the gravity acceleration.

The dynamic and kinematic boundary conditions on the free surface(x2= η(x1, x3, t)),
respectively, are

p = η

Fr2
(6)

u2 = dη

dt
= ∂η

∂t
+ u j

∂η

∂xj
, (7)
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where d/dt is the material derivative operator. Surface tension effects are not considered in
this study.

In the above formulation, the free-surface elevation is an unknown function of time,
which renders the flow domain time-dependent and complicates the computation of the fil-
tering integral in (1). To overcome this problem, boundary-fitted coordinates are introduced
according to

x∗1 = x1, x∗2 = x2− η(x1, x3, t), x∗3 = x3, t∗ = t, (8)

wherex∗1, x∗2, andx∗3 are the coordinates in the transformed domain. The above transfor-
mation is intended to be used only for flows with infinite depth (x2→−∞) without the
presence of solid boundaries. Derivatives are transformed as follows:

∂

∂x1
= ∂

∂x∗1
− ∂η

∂x∗1

∂

∂x∗2
,

∂

∂x2
= ∂

∂x∗2
,

∂

∂x3
= ∂

∂x∗3
− ∂η

∂x∗3

∂

∂x∗2
,

∂

∂t
= ∂

∂t∗
− ∂η

∂t∗
∂

∂x∗2
. (9)

At this point, no transformation is attempted on the dependent variables (velocity and
pressure) in order that they be filtered in their physical form.

Then, according to (8) and (9), the continuity and Euler equations, respectively, become

∂ui

∂x∗i
− ∂u1

∂x∗2

∂η

∂x∗1
− ∂u3

∂x∗2

∂η

∂x∗3
= 0 (10)

∂ui

∂t∗
+ u j

∂ui

∂x∗j
− Hi = − ∂p

∂x∗i
, (11)

where

Hi = u1
∂ui

∂x∗2

∂η

∂x∗1
+ u3

∂ui

∂x∗2

∂η

∂x∗3
+ ∂ui

∂x∗2

∂η

∂t∗
+ ∂p

∂x∗2

∂η

∂x∗i
, (12)

while the dynamic and kinematic free-surface boundary conditions, (6) and (7) respectively,
become

p = η

Fr2
(13)

u2 = dη

dt∗
= ∂η

∂t∗
+ u j

∂η

∂x∗j
(14)

and are applied atx∗2 = 0. With this formulation, the transformed free-surface boundary,
and hence the flow domain, are not functions of time, while the influence of the free-surface
elevation on the physics of the flow introduces new terms in the transformed equations of
motion.

The governing equations for the resolved scales are obtained by applying the filtering
operation (1) to the transformed equations of motion. In this paper, two-dimensional flows
(on thex1− x2 plane) are considered; therefore, for clarity of the exposition, only the two-
dimensional formulation will be presented in the rest. The filtered continuity equation is

∂ū1

∂x∗1
+ ∂ū2

∂x∗2
− ∂ū1

∂x∗2

∂η̄

∂x∗1
− ∂β

∂x∗2
= 0, (15)
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where

β = u1
∂η

∂x∗1
− ū1

∂η̄

∂x∗1
. (16)

Similarly, the two-dimensional (i = 1, 2) filtered momentum equations are

∂ūi

∂t∗
+ ū j

∂ūi

∂x∗j
− H̄i + ūi

∂β

∂x∗2
= − ∂ p̄

∂x∗i
− ∂τi j

∂x∗j
+ ∂τ

η
i 2

∂x∗2
, (17)

where

H̄i = ū1
∂ūi

∂x∗2

∂η̄

∂x∗1
+ ∂ūi

∂x∗2

∂η̄

∂t∗
+ ∂ p̄

∂x∗2

∂η̄

∂x∗i
, (18)

τi j = ui u j − ūi ū j (19)

and

τ
η
i 2 =

(
ui u1

∂η

∂x∗1
− ūi ū1

∂η̄

∂x∗1

)
+
(

ui
∂η

∂t∗
− ūi

∂η̄

∂t∗

)
+
(

p
∂η

∂x∗i
− p̄

∂η̄

∂x∗i

)
. (20)

The eddy SGS stress,τi j , corresponds to the effect of the unresolved velocity scale, while
the wave SGS stress,τ ηi 2, corresponds to the combined effect of both the unresolved velocity
and free-surface elevation scales. Note that, by definition,τi j is a symmetric tensor, while
τ
η
i j is not since it has nonzero values only in the gravity direction. Due to their dependence

on unresolved scales, both SGS stresses have to be modeled. All other terms of the filtered
momentum equations (17) are functions of the resolved velocity and free-surface elevation
scales, includinḡHi .

The filtered dynamic and kinematic free-surface boundary conditions (atx∗2 = 0), respec-
tively, become

p̄ = η̄

Fr2
(21)

ū2 = ∂η̄

∂t∗
+ ū1

∂η̄

∂x∗1
+ β. (22)

The SGS stresses,τi j and τ ηi j , will be modeled according to the models presented in
Section 3, while the subgrid termβ that appears in Eqs. (15), (17), and (22) is set equal
to zero because a priori tests of the flows considered in this paper show this term to be
negligible.

Transforming back to the physical domain by usingx∗1 = x1 andx∗2 = x2+ η̄, the filtered
continuity equation becomes

∂ū1

∂x1
+ ∂ū2

∂x2
− ∂β

∂x2
= 0 (23)

while the two-dimensional filtered momentum equations become

∂ūi

∂t
+ ū j

∂ūi

∂xj
+ ūi

∂β

∂x2
= − ∂ p̄

∂xi
− ∂τi j

∂xj
+ ∂

∂x2

(
τ
η
i 2− τi 1

∂η̄

∂x1

)
︸ ︷︷ ︸ . (24)



LARGE-WAVE SIMULATION OF FREE-SURFACE FLOWS 177

Note that these equations are not directly deduced by filtering the original Eqs. (4) and (5)
without the intermediate application of the boundary-fitted transformation. Therefore, for
free-surface flows, a consistent filtering requires first the application of a boundary-fitted
transformation to include the free-surface effect in the equations of motion. With the most
simple boundary-fitted transformation chosen in this paper, the effect of the free-surface
elevation introduces the underbraced term of the momentum equations (24). More complex
transformations will result in more complex forms of this term, depending possibly on
higher derivatives of the free-surface elevation and requiring more complex models than
the ones presented in the next section.

3. SGS STRESS MODELS

Since the equations of motion derived in the previous section have to be solved only for
the resolved scales (ūi , η̄), the SGS stresses (τi j , τ

η
i j ) should be modeled as functions of

the resolved scales.
In LES computations, only the eddy SGS stress,τi j , is present and can be modeled using

eddy-viscosity models [17] according to

τi j = −2νT S̄i j = −2C21̄2|S̄|S̄i j , (25)

whereC is a model parameter,̄1 is the length scale related to the filter width (see below),
and|S̄| = (2S̄i j S̄i j )

1/2 is the magnitude of the resolved-scale strain-rate tensor:

S̄i j = 1

2

(
∂ūi

∂x∗j
+ ∂ū j

∂x∗i

)
. (26)

The filter width1̄ is defined by

1̄ = (1̄11̄2)
1/2, (27)

where1̄i is the grid spacing in theith direction.
In LWS, according to (20), the wave SGS stress,τ

η
i j , is dominated by triple velocity/

velocity/free-surface-elevation correlations of the form

ui u1
∂η

∂x∗1
− ūi ū1

∂η̄

∂x∗1
, (28)

which are expected to be high in the region just beneath the breaker face where the turbulence
intensity and the free-surface slope are the highest during and after breaking. Therefore, in
this paper,τ ηi j is also modeled using an eddy-viscosity model and is correlated to a modified
resolved-scale strain-rate tensor, which incorporates the free-surface elevation effect in the
form

τ
η
i j = −2νηSηi j

∂η̄

∂x∗1
= −2C2

η1̄
2
∣∣Sηi j ∣∣Sηi j ∂η̄

∂x∗1
, (29)

whereCη is a model parameter and the modified large-scale strain-rate tensor is

Sη12 =
∂ū1

∂x∗1
, Sη22 =

1

2

(
∂ū1

∂x∗2
+ ∂ū2

∂x∗1

)
, Sηi 1 = 0. (30)
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Apart from (28), the wave SGS stress is also influenced by the term

ui
∂η

∂t∗
− ūi

∂η̄

∂t∗
. (31)

Using the kinematic free-surface boundary condition (14), the above term (31) becomes

ui u2|x∗
2
=0
− ūi u2|x∗

2
=0
− ui u1|x∗

2
=0

∂η

∂x∗1
+ ūi u1|x∗

2
=0

∂η̄

∂x∗1
(32)

and can be modeled similarly to Eqs. (25) and (29). Only the deviatoric part of the SGS
stress tensors in (25) and (29) is substituted in the momentum equations (17) because the
isotropic part is absorbed into pressure.

Physically, one can think of the wave SGS stresses as the vertical force applied on the
resolved scales by the subgrid wave fluctuations as they fall down the front of the spilling
breaker. This force adds a shear component in thex1 momentum direction and a normal
component in thex2 momentum direction, as shown in Eqs. (17) and (24). It should be
clarified, though, that modeling of the SGS stresses does not, by itself, constitute modeling
of the breaking process; it must be combined with the contribution of the resolved scales
dynamics.

The parametersC andCη can be either constants, like the Smagorinsky model in LES,
or functions of time and/or space, in which case they can be evaluated using, for example,
a dynamic eddy-viscosity model [11]. In this paper, as a first step in LWS modeling, only
constant parameter values are considered in order to demonstrate that an eddy-viscosity
model for the wave SGS stresses (which are unique to LWS) is at least as accurate as an
eddy-viscosity model for the eddy SGS stresses (which are common to LWS and LES).

4. NUMERICAL IMPLEMENTATION

The numerical methodology used in this paper employs an operator splitting scheme for
the temporal integration of the equations of motion, and spectral methods for the spatial
discretizations, with Fourier modes in the streamwise direction, and Chebyshev modes in
the vertical direction [5].

All unknown flow variables are represented by

f (x∗1, x∗2, t∗) =
∑
|l |<L

N∑
n=0

fln(t
∗) exp

(
2π ı

lx∗1
B

)
Tn

(
2x∗2
D
+ 1

)
, (33)

where 2L is the number of Fourier modes in thex∗1 direction over the range [−B/2, B/2],
N is the number of Chebyshev modes in thex∗2 direction over [0, −D], andTn(s) is the
Chebyshev polynomial of ordern, defined in the [−1, +1] range.

To further simplify the numerical solution of the equations of motion, a flow variable
transformation is introduced,

ū∗1 = ū1

ū∗2 = ū2− dη̄

dt∗
(34)

p̄∗ = p̄,
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by which the continuity Eq. (15) becomes

∂ū∗i
∂x∗i
= 0, (35)

and the filtered momentum Eqs. (17) in rotational form [6] become

∂ū∗1
∂t∗
= −ū∗2ω −

∂5

∂x∗1
+ ∂ p̄∗

∂x∗2

∂η̄

∂x∗1
− ∂τ1 j

∂x∗j
+ ∂τ

η
12

∂x∗2
(36)

∂ū∗2
∂t∗
= −ū∗1ω −

∂5

∂x∗2
− d2η̄

dt∗2
− ∂τ2 j

∂x∗j
+ ∂τ

η
22

∂x∗2
, (37)

where5= p̄∗ + 1
2(ū
∗
1)

2+ 1
2(ū
∗
2)

2 is the dynamic pressure head,ω is the vorticity (a scalar in
two-dimensional flows) of the resolved flow field and d2/dt∗2 is the second-order material
derivative.

With this flow variable transformation, the boundary conditions on the free-surface be-
come

p̄∗ = η̄

Fr2
, ū∗2 = 0, (38)

while asx∗2→−∞,

ū∗1→ U∞, ū∗2→−
dη̄

dt∗
, p̄∗ → 0, (39)

whereU∞ is the free-stream flow velocity. For the numerical implementation, thex∗2 do-
main is truncated at a sufficient depth,D, so the previous boundary conditions (39) are
implemented atx∗2 =−D.

The numerical solution of this new form of the momentum equations is carried out using
a fractional time step method. At the first stage of each time step, the nonpressure, nonlinear
terms of Eqs. (36) and (37) are treated explicitly,

(û1)
n+1− (ū∗1)n
1t

=
(
−ū∗2ω −

∂τ1 j

∂x∗j
+ ∂τ

η
12

∂x∗2

)n

(40)

(û2)
n+1− (ū∗2)n
1t

=
(
−ū∗1ω −

d2η̄

dt∗2
− ∂τ2i

∂x∗j
+ ∂τ

η
22

∂x∗2

)n

, (41)

where the superscript,n, denotes the current time step number,ûi are the first intermediate
velocities, and1t is the time step.

At the second stage of each time step, the pressure terms of the momentum Eqs. (36)
and (37) are treated implicitly using a predictor–corrector iteration method which iterates
on the pressure head,5. The second set of intermediate velocities is defined,

( ˆ̂u1)
n+1
m − (û1)

n+1 = 1t

(
∂η̄

∂x∗1

)n(
∂ p̄∗

∂x∗2

)n+1

m−1

(42)

( ˆ̂u2)
n+1
m − (û2)

n+1 = 0, (43)
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where the subscript,m, denotes the current predictor–corrector iteration number. For the
special case ofm= 1, the pressure value from the preceding time step is used in Eq. (42).

At the third and final stage of each time step, the velocity field at the next time step is
obtained by

(ū∗1)
n+1− ( ˆ̂u1)

n+1
m

1t
= −

(
∂5

∂x∗1

)n+1

m

(44)

(ū∗2)
n+1− ( ˆ̂u2)

n+1
m

1t
= −

(
∂5

∂x∗2

)n+1

m

. (45)

By combining Eqs. (44) and (45), and applying the continuity equation, (∂ū∗i /∂x∗i )
n+1= 0,

a Poisson equation is obtained for5,(
∂25

∂x∗21

+ ∂25

∂x∗21

)n+1

m

= 1

1t

(
∂ ˆ̂ui

∂x∗i

)n+1

m

, (46)

which is solved using the tau method to account for the pressure head boundary conditions.
These conditions are the free-surface boundary condition,

5n+1
m =

(
η̄

Fr2
+ 1

2
(ū∗1)

2

)n

, (47)

obtained from Eqs. (38), and the boundary condition atx∗2 =−D,(
∂5

∂x∗2

)n+1

m

= 0, (48)

obtained from Eqs. (37) and (39).
A new estimate of the pressure term∂ p̄∗/∂x∗2 is found from the current estimate of the

pressure head (
∂ p̄∗

∂x∗2

)n+1

m

=
(
∂5

∂x∗2

)n+1

m

−
(

ū∗1
∂ū∗1
∂x∗2
+ ū∗2

∂ū∗2
∂x∗2

)n

, (49)

which in turn yields a new estimate for the second intermediate velocities,ˆ̂ui , according
to (42). Then, a new value for5n+1

m is computed using (46). The error for each corrector–
predictor iteration step is measured as

em+1 = max
∣∣5n+1

m+1−5n+1
m

∣∣. (50)

An estimate of the pressure head is accepted as the final pressure head for a given time
step(n+ 1) when the error measure is below a prescribed threshold,ε. For all numerical
simulations presented in this paper, the valueε= 10−6 is used.

The resulting pressure head,5n+1, is used to determine the velocity, (ū∗i )
n+1, at the next

time step using Eqs. (44) and (45). Finally, the boundary condition (39) is applied to solve
for the free-surface elevation at the(n+ 1) time step:(

∂η̄

∂t∗
+U∞

∂η̄

∂x∗1

)n+1

= −
(

ū∗2|x∗
2
=−D

)n+1
. (51)
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The global time-accuracy of this numerical scheme is O(1t). Although the local error
for each stage of the time step is of higher order, the accuracy for each full time step is
lowered because the operations involved in the three stages do not commute.

5. A PRIORI TESTS

In this section, a priori testing results are presented where the predicted modeled SGS
stresses are compared to the actual SGS stresses for two free-surface flows.

For the flows presented, the results of two-dimensional direct Euler numerical simulations
(DENS) are used to compute both the actual SGS stresses, according to Eqs. (19) and (28),
and the modeled SGS stresses, according to Eqs. (25) and (29). The numerical methodology
for the DENS is the same with the one described in the previous section apart from the fact
that the SGS terms are not present. The resolved velocity components,ū1 andū2, and the
resolved free-surface elevation, ¯η, are obtained by retaining only a portion of the DENS
Fourier modes according to the following sharp Fourier cutoff filter,

Ḡ(k) =
{

1 if k ≤ kmax

0 if k > kmax,
(52)

wherekmax=π/11 is the highest wavenumber resolved. In wave space, the convolution
equation (1) simplifies tōf (k, x∗2, t∗)= Ḡ(k) f (k, x∗2, t∗).

For clarity of the a priori comparisons, the eddy and wave SGS stresses are presented
after they are averaged and scaled according to the following definitions:

〈τi j 〉
〈Ti j 〉max

=
∫
τi j dx∗1dt∗

max[
∫

Ti j dx∗1dt∗]x∗2

(53)

〈τ ηi j 〉
〈Ti j 〉max

=
∫
τ
η
i j dx∗1dt∗

max[
∫

Ti j dx∗1dt∗]x∗2

, (54)

where

Ti j = (ui − 〈ui 〉)(u j − 〈u j 〉) (55)

are the Reynolds stresses of the flow. In Eqs. (53) and (54), the scaling factor is the maximum
value over depth (x∗2 direction) of the appropriate averaged Reynolds stress. All SGS stresses
are scaled with respect to the Reynolds stresses of the flow in order to reveal their size, and
therefore significance, with respect to the large-scale dynamics of the flow. In this paper, the
smallest resolved scale was chosen so that the SGS stresses are always of order not larger
than about 10% of the corresponding Reynolds stresses.

5.1. Gravity Wave and Surface Wake Interaction

The first flow to be considered involves the interaction between a plane gravity wave and
a two-dimensional parallel wake flow.

Experiments [15] have investigated the free-surface breaking conditions of such a wave/
shear interaction using the following configuration in a towing tank: a submerged moving
hydrofoil is used to generate a steady gravity wave, while a thin Mylar sheet is dragged
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FIG. 2. Experimental setup for gravity-wave/surface-wake interaction. A submerged hydrofoil with speed
U∞ generates a steady gravity wave, while a thin Mylar sheet dragged along the surface with identical speedU∞
generates the surface wake. The wake velocity profile is presented from a frame of reference moving with velocity
U∞.

along the surface to generate the surface wake (see Fig. 2). Both the submerged hydrofoil
and the sheet move with speedU∞= 80 cm/s. This flow was also studied by DENS [15]
using, initially, a two-dimensional parallel shear flow to model the sheet wake, and a plane
gravity wave to model the hydrofoil wave. The DENS results are used for the a priori tests
in this paper.

The initial velocity profile of the parallel shear flow corresponds to the mean velocity
profile measured in the wake of the Mylar sheet at a streamwise distance corresponding
to the location where the free surface crosses the mean water level just upstream of the
wave crest. This profile, in the frame of reference moving with velocityU∞, is fitted by the
dimensionless expression,

u1(x2) = 1− q(1− tanh2(σ x2)), q = 1− Uo

U∞
, (56)

whereU∞ is the free-stream velocity (equal to the hydrofoil and sheet speeds),Uo is the
free-surface velocity andσ is a fitting parameter. The parameters considered in this study
areq= 0.3 andσ = 0.88137, and the corresponding velocity profile is displayed in Fig. 3.
Note that the characteristic length scale,b, of this flow is the half-width of the velocity
profile (56) corresponding to the dimensionless depthx2=−1, whereu1= (U∞+Uo)/2.

FIG. 3. Dimensionless velocity profile for shear flow (56) withq= 0.3 andσ = 0.88137.
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The plane gravity wave, which defines the initial free-surface elevation,η, is represented
by a second-order Stokes wave with dimensional wavelengthλ= 2πU2

∞/g, according to
linear theory, and dimensionless amplitudeα

η(t = 0) = α cos(kx1)+ 1

2
kα2 cos(2kx1), (57)

where the dimensionless wavenumber,k, of the gravity wave is related to the Froude number
of the flow according to

k = 2πb

λ
= gb

U2∞
= 1

Fr2
. (58)

For the first a priori tests presented, the case with Fr= 3.6 and amplitudeα= 2.33(kα≈
0.18) is considered, which experiments show corresponds to a weak breaking wave with
steepness (waveheight/wavelength) very close to the incipient breaking condition [15]. An
incipient breaking wave is defined as a nonbreaking wave for which even a slight increase
in steepness will cause breaking. The DENS results indicate that the wave begins to break
at aboutt = 70. The amplitude of the wave at this time corresponds to the experimentally
measured wave amplitude at its breaking point [15]. For the DENS, a time step of 0.00025
was used, with 64 Fourier modes in thex∗1 direction (B= 2πFr2= 81.43) and 64 Chebyshev
modes in thex∗2 direction (D= 40).

In order to define the filtered velocity components,ū1 andū2, only the first 24 low-order
Fourier modes and all 64 Chebyshev modes are retained. The actual eddy and wave SGS
stresses are computed according to Eqs. (19) and (28), and scaled as described in Eqs. (53)
and (54). The modeled eddy and wave SGS stresses are computed according to Eqs. (25)
and (29) and similarly scaled.

The scaled mean of the actual and modeled eddy SGS stresses,τi j , and of the actual and
modeled wave SGS stresses,τ

η
i j , are displayed in Fig. 4. The eddy SGS componentτ22 is not

plotted sinceτ22= −τ11. The solid lines indicate the scaled mean of the actual SGS stresses,
while the symbols indicate the scaled mean of the modeled SGS stresses where the values
of C andCη are provided by the best fit in the least squares sense [12]. This constant of best
fit is allowed to vary between stress components. In these figures, it is shown that the gross
features of the actual SGS stresses are captured by the a priori modeled SGS stresses for an
appropriate eddy-viscosity constant. This is especially true in the case of the shear stresses
(τ12 andτ η12), which are at least one order of magnitude more significant than the normal
stresses (τ11 andτ η22). This relative size difference between the various stress components
indicates that the shear SGS stresses have a larger impact on this flow. Different models are
used forτi j andτ ηi j ; therefore, it is appropriate to have different constants for each model;
that is,C 6=Cη. However, the eddy-viscosity constant can not vary between the components
of τi j andτ ηi j . In this case, where the shear eddy SGS stresses are more significant than the
normal eddy SGS stresses, it is more important that the constantC be appropriate forτ12,
as long asC does not significantly increase the magnitude ofτ11 andτ22. This is also the
case for the constantCη when modeling the shear wave SGS stresses.

A second set of a priori tests was performed on the same flow with a different wave
amplitude,α= 2.59(kα≈ 0.20). This is a flow where the experiments by Milleret al. [15]
show that wave breaking is strong. The DENS computational parameters are the same as
in the previous example. Figure 5 displays the scaled mean SGS stresses for this case,



FIG. 4. A priori tests comparing actual to model scaled mean SGS stresses for the gravity-wave/surface-wake
interaction, withα= 2.33. Values ofC andCη are best fit in least squares sense. For this case,〈T11〉max= 1.3× 10−2

and〈T12〉max= 8.6× 10−4.

FIG. 5. A priori tests comparing actual to model scaled mean SGS stresses for the gravity-wave/surface-wake
interaction, withα= 2.59. Values ofC andCη are best fit in least squares sense. For this case,〈T11〉max= 1.8× 10−2

and〈T12〉max= 1.1× 10−3.
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where the values ofC andCη vary for each stress and are provided by the least squares
fit to the actual stress. The a priori model captures well all the stresses, regardless of their
comparative size.

When observing the values forC andCη provided by the least squares fit for both cases
presented (α= 2.59 and α= 2.33), it is interesting to note that the best fit values for the
largest eddy SGS stresses of each case,C= 0.10 andC= 0.03, are of the same order with
the traditional Smagorinsky constant value ofC= 0.18. The best fit values for the largest
wave SGS stresses of each case,Cη= 1.13 andCη= 0.69, are one order larger than the
Smagorinsky constant. Therefore, both of these a priori test cases indicate that the best fit
to the actual SGS stresses is achieved when the constantsC andCη are allowed to have
differing values; that is,C 6=Cη.

5.2. Shear Layer and Free Surface Interaction

The second flow addressed is the evolution of a two-dimensional, parallel shear flow with
an initially flat free surface. The nonlinear growth of the instability of this shear flow and
its free-surface manifestation develop spilling breakers due to an increasingly steep free-
surface slope with a small amplitude. This flow has been studied by Dimas and Triantafyllou
[6], who show that DENS is unable to continue past the breaking point. No experimental
measurements are available for this flow.

The initial dimensionless velocity profile of the shear flow is the same as in (56), with a
different value forq, and is displayed in Fig. 6. The parameter values used,q= 0.9988 and
σ = 0.88137, correspond to a velocity profile measured in the near-wake of a NACA-0003
hydrofoil in unbounded fluid [14]. The Froude number is Fr= 0.5.

For the DENS, a time step of 0.004 was used, with 64 Fourier modes along thex∗1 di-
rection (B= 2π/k= 15.7, wherek= 0.4 is the wavelength of the most unstable wave),
and 48 Chebyshev modes in thex∗2 direction (D= 12). At time t = 0, a small amplitude
disturbance is applied to the flow; the linear instability wave associated with this distur-
bance defines the initial free-surface elevation and wavelength. For the a priori computation
of the modeled SGS stresses, only the first 16 low-order Fourier modes are retained to
define the filtered velocity components,ū1 and ū2, while all 48 Chebyshev modes are
retained.

FIG. 6. Dimensionless velocity profile for shear flow (56) withq= 0.9988 andσ = 0.88137.
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FIG. 7. A priori tests comparing actual to model scaled mean SGS stresses for the interaction of a shear flow
and its developing free-surface manifestation. Values ofC andCη are best fit in least squares sense. For this case,
〈T11〉max= 3.6× 10−2 and〈T12〉max= 9.7× 10−4.

The a priori tests are displayed in Fig. 7. All of the eddy SGS stresses are captured well
by the model, even though there is a large relative size difference between the shear and
normal stress components. The DENS data was insufficient to provide a good measure of
the actual wave SGS stresses, but the gross characteristics are captured by the modeled
wave SGS stresses. In this flow, as opposed to the results of Section 5.1, the shear eddy SGS
stress is one order larger than the shear wave SGS stress, indicating that eddy SGS stresses
are more significant than wave SGS stresses with respect to the large scales of the flow.
One possible explanation for this is that the wave steepness (∼0.0006) is small, whereas
the steepness for the weak breaker of Section 5.1 (∼0.06) is much higher. Since the model
captures well the more significant eddy SGS stresses in this case, it is a good indication that
the constant eddy-viscosity model employed for these stresses is appropriate. Furthermore,
an LWS implementation of this flow [4] was successful in avoiding the DENS problems
and continue the simulation past the breaking point. These results are not presented here in
order to avoid repetition.

6. LWS OF SPILLING BREAKERS

In this section, the results of LWS and LES implementations for the interaction of a
gravity wave and a surface wake are presented. The LWS implementation models both
the eddy and wave SGS stresses,τi j andτ ηi j , while the LES implementation incorporates
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a model only for the eddy SGS stress,τi j , and neglects the wave SGS stress,τ
η
i j . The

flow domain, initial velocity profile, and initial free-surface elevation are as described in
Section 5.1 and shown in Figs. 2 and 3. The spatial discretization for all cases was carried
out as described in Section 4, Eq. (33), with 24 Fourier modes in thex1 direction and 64
Chebyshev modes in thex2 direction. Apart from any LWS physical modeling advantages,
the lower number of modes used for the spatial discretization in thex1 direction offers a
considerable computational time savings over corresponding DENS implementations.

The LWS and LES are implemented withα= 2.33, whereα is the amplitude of the grav-
ity wave in (57), which corresponds to the weak breaking wave considered in Section 5.1.
Several combinations ofC andCη values are considered in order to examine their effect on
the large scale dynamics of the flow. An additional LWS is implemented for the case with
α= 2.59, which corresponds to the strong breaking wave of Section 5.1. All LWS and LES
implementations presented here were successful in simulating the two-dimensional free-
surface shear flow beyond the formation of breaking waves but with differing large-scale
flow features. The results presented in this section will provide insight to the long-term appli-
cability of LWS in terms of extension to more general three-dimensional free-surface flows.

6.1. A Posteriori Tests

For the case withα= 2.33, a posteriori tests are carried out in which the modeled eddy
and wave SGS stresses output from the LWS are compared to the actual and the a pri-
ori predicted SGS stresses, which are both computed from the DENS results. All SGS
stresses (actual, a priori and a posteriori) are averaged and scaled according to Eqs. (53) and
(54).

The a posteriori comparisons are carried out for two LWS runs:C= 0.03, Cη= 0.69;
andC=Cη= 0.22. The first set of constants corresponds to the a priori best fit for each
stress tensor, while the second set corresponds to the a priori best fit under the condition
that the two constants are equal. The latter set is considered in order to enforce our a
priori conclusion that best results are achieved, in general, when the two constants are not
equal. The results for the more significant shear SGS stresses are shown in Figs. 8 and 9,

FIG. 8. A posteriori comparison tests of scaled mean SGS stresses for the gravity-wave/surface-wake inter-
action (α= 2.33); modeled stresses are results from LWS implementation withC= 0.03 andCη = 0.69.
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FIG. 9. A posteriori comparison tests of scaled mean SGS stresses for the gravity-wave/surface-wake inter-
action (α= 2.33); modeled stresses are results from LWS implementation withC=Cη = 0.22.

respectively. The agreement between a priori and a posteriori scaled mean SGS stresses is
good, showing that the a priori tests have provided a good means for estimating the values
of C andCη. The first set of constants, though, presents a better agreement between the
actual and the a posteriori SGS stresses than the second set.

In terms of the first set of constants (C= 0.03,Cη= 0.69), the a posteriori shear eddy SGS
stress,τ12, agrees very well with its corresponding actual stress, indicating that a constant
eddy-viscosity model is appropriate for this term. On the other hand, the a posteriori shear
wave SGS stress,τη12, does not show as good an agreement with the actual. This lack of
agreement indicates that a dynamic eddy-viscosity model may be more appropriate for
modelingτ ηi j in this case.

Another set of a posteriori tests are carried out for the case withα= 2.59. This LWS
implementation was carried out withC= 0.10 andCη= 1.13, constants which correspond
to the a priori best fit for each stress tensor. The results, displayed in Fig. 10, show good

FIG. 10. A posteriori comparison tests of scaled mean SGS stresses for the gravity-wave/surface-wake inter-
action (α= 2.59); modeled stresses are results from LWS implementation withC= 0.10 andCη = 1.13.
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agreement between the a posteriori shear eddy SGS stress (τ12) and the corresponding actual
stress. Once again, the agreement is not as good for the shear wave SGS stress,τ

η
12.

6.2. Flow Characteristics

To examine the large scale features of the flow, the weak breaker case withα= 2.33
is considered first. The evolution of the free-surface elevation from the DENS and the
corresponding LWS withC= 0.03 andCη= 0.69 are shown in Figs. 11 and 12, respectively.
In these figures, the free-surface elevations are stacked in time: they are plotted every dt = 5
time units with a shift along theη axis of dη= 0.5 per rendering.

The DENS results present a sharp steepening of the free-surface elevation where the wave
crest develops a bulge shape on its forward face. This shape is similar to that found in gentle
short-wavelength spilling breakers (see [10]). The point of maximum upward curvature
at the leading edge of the bulge is called the toe. In the LWS case, with only 24 Fourier
modes, this steepening is not resolvable, therefore, only the large wave scales of the free-
surface shape are rendered beyond breaking. This result is also evident in the behavior of
the minimum and maximum free-surface slope over time: for the LWS, the slope envelope
is fairly flat, while for the DENS, the envelope expands substantially after the breaking
point (t ≈ 70). The free-surface steepening and the subsequent bulge formation just before
the breaking point are the characteristics which lead to the numerical problems with DENS
of spilling breakers presented in the next paragraph. The grid size is insufficiently fine
to resolve the sharp free-surface shape at the toe of the bulge. The LWS overcomes the
numerical difficulties associated with the DENS of a breaking wave by resolving only the

FIG. 11. The evolution of the free-surface elevation and the corresponding minimum and maximum of the
free-surface slope from the DENS of the gravity-wave/surface-wake interaction.
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FIG. 12. The evolution of the free-surface elevation and the corresponding minimum and maximum of the
free-surface slope from the LWS (C= 0.03,Cη = 0.69) of the gravity-wave/surface-wake interaction.

gross characteristics of the free-surface elevation and not the sharp steepening of the crest
nor the postbreaking small fluctuations at the forward face of the breaker. A hint of these
postbreaking small fluctuations is evident in Fig. 13, where the difference between the
DENS free-surface elevation and the filtered DENS free-surface elevation is plotted. The
filtered result is found by a posteriori filtering the free-surface elevation resulting from the

FIG. 13. The difference between the DENS free-surface elevation and the filtered DENS free-surface elevation
from t = 30 tot = 110. The wave breaking point is att ≈ 70.



LARGE-WAVE SIMULATION OF FREE-SURFACE FLOWS 191

FIG. 14. Vorticity contours from DENS and LWS withC= 0.03 andCη = 0.69 at timet = 100. Solid lines
represent negative vorticity, dashed lines represent positive vorticity, and contours are at equal intervals from
−0.166 to 0.002, with a spacing of 0.012.

DENS down to 24 Fourier modes. In Fig. 13, the difference between free-surface elevations
is plotted every dt = 10 time units fromt = 30 to t = 110, with a shift along theη axis of
dη= 0.05. The small fluctuations are most evident right after the breaking point (t ≈ 70).

In terms of the underlying flow, the DENS results show the development of a numerical in-
stability in the vorticity field close to the free surface at a time which coincides with the incip-
ient wave-breaking event (Fig. 14). It is shown [15] that this instability, displayed as the un-
physical lack of smoothness in the vorticity contours, is related to the sharp shape of the
free surface at the toe of the bulge that cannot be resolved with any finite number of modes.
Obviously, beyond this point the DENS results are not accurate. The vorticity contours
from the corresponding LWS run (Fig. 14) are all smooth, and display a weak formation of
vortices which are characteristic of the postbreaking behavior of spilling breakers.

In order to study the effect of SGS stresses on the postbreaking flow evolution, sev-
eral LES and LWS implementations of the weak breaker case are performed. For the
effect of eddy SGS stresses, LES computations were carried out for three different eddy-
viscosity constant values: the traditional Smagorinsky value ofC= 0.18, as well asC= 0.22
andC= 0.12(Cη≡ 0 for all LES). The free-surface elevations and the vorticity contours
are very similar for all these runs, indicating that the value of the eddy-viscosity con-
stant betweenC= 0.12 andC= 0.22 does not have a strong effect on the dynamic fea-
tures of the flow. The only difference between these runs is an increasing dissipative
effect with increasing values ofC due to the diffusive nature of the eddy SGS stress
model.
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FIG. 15. Vorticity contours for the weak breaker (α= 2.33) at timet = 140 from LES withC= 0.18, LWS
with C=Cη = 0.22, and LWS withC= 0.03, Cη = 0.69. Solid lines represent negative vorticity, dashed lines
represent positive vorticity, and contours are at equal intervals from−0.166 to 0.002, with a spacing of 0.007.

For the effect of the wave SGS stresses, first an LWS computation is considered with
C=Cη= 0.22, and is compared to the LES run withC= 0.22. Although the results are
not identical, there is no significant change in the free-surface elevation nor the vorticity
contours from those of the LES computations. Then, the LWS computation withC= 0.03
andCη= 0.69 is considered. These values correspond to the best fit values for the eddy
and wave SGS stresses from the a priori tests in Section 5.1. As with the previous LWS run
(C=Cη= 0.22), there is no significant change in the character of the free-surface elevation.
However, there is a significant difference in the vorticity structure well beyond the breaking
point.

Figure 15 shows the vorticity contours of a typical LES and the two LWS implemen-
tations att = 140, which is well beyond the breaking point. The LWS with the a priori
suggested eddy-viscosity constants (C= 0.03,Cη= 0.69) displays the presence of a new
vortex at the forward face of the breaker which is qualitatively similar to the characteristic
recirculating flow region in the wake of spilling breakers [13]. This structure in the vorticity
contours is not present in any of the other results, which displayed only a purely dissipative
behavior.
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FIG. 16. Vorticity contours for the strong breaker (α= 2.59) at timet = 140 from LWS withC= 0.10,
Cη = 1.13. Solid lines represent negative vorticity, dashed lines represent positive vorticity, and contours are at
equal intervals from−0.166 to 0.002, with a spacing of 0.007.

A similar LWS computation is considered for theα= 2.59 case, which corresponds to
a strong breaking wave. For this case, the valuesC= 0.10 andCη= 1.13 are used, which
correspond to the best fit values from the appropriate a priori tests in Section 5.1. Figure 16
shows the vorticity contours from this LWS att = 140, where the presence of a new vortex
can also be seen. In this case of strong breaking, the DENS computation breaks down
soon after the breaking point. Without accurate DENS beyond the breaking point, further
quantitative comparisons are needed between the LWS results and future experimental data.
In terms of the LWS modeling, the appearance of the breaker vortex in the two LWS results
(α= 2.33, C= 0.03, Cη= 0.69; andα= 2.59, C= 0.10, Cη= 1.13) is probably due to
the anisotropic character ofτ ηi j .

Finally, the kinetic energy transfer between resolved and subgrid scales is considered for
the LWS case withα= 2.33 andC= 0.03, Cη= 0.69. The equation for the evolution of
the resolved scales kinetic energy can be easily derived from Eq. (17) to be

1

2

∂ūi ūi

∂t∗
+ ūi ū j

∂ūi

∂x∗j
− ūi H̄i = −ūi

∂ p̄

∂x∗i
− ūi

∂τi j

∂x∗j
+ ūi

∂τ
η
i 2

∂x∗2︸ ︷︷ ︸, (59)

where the underbraced terms represent the SGS transport, i.e., the total transfer of energy
between resolved and subgrid scales.

The instantaneous distribution of the wave SGS transport,ūi ∂τ
η
i 2/∂x∗2, is displayed in

Fig. 17 for time instances well before, during (t ≈ 70), and well beyond breaking. These
plots show that the peak of the wave SGS transport activity: (1) is positive (transfer from
subgrid to resolved scales), (2) takes place within a short time just before, during, and just
after breaking, and (3) is located in the region underneath the spilling breaker face. All these
coincide with the appearance and location of the small-scale fluctuations associated with
the breaking process. Although these scales are not resolved, their effect is modeled auto-
matically by LWS. A representative instantaneous distribution of the eddy SGS transport,
−ūi ∂τi j /∂x∗j , att = 60 is shown in Fig. 18, using the same contour levels as in Fig. 17. It is
concluded that during breaking the kinetic energy transfer is dominated by the wave SGS
transport.
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FIG. 17. Contours of the wave SGS transport,ūi ∂τ
η

i 2/∂x∗2 , from the LWS of the weak breaker (α= 2.33)
with C= 0.03, Cη = 0.69. Solid lines represent positive transport, dashed lines represent negative transport,
and contours are at equal intervals from−6.0× 10−6 to 26.0× 10−6, with a spacing of 4.0× 10−6. (a) t = 20,
(b) t = 60, (c)t = 70, (d)t = 80, (e)t = 90, (f) t = 140.

FIG. 18. Contours of the eddy SGS transport,−ūi ∂τi j /∂x∗j , at t = 60 from the LWS of the weak breaker
(α= 2.33) with C= 0.03, Cη = 0.69. Solid lines represent positive transport, dashed lines represent negative
transport, and contours are at equal intervals from−6.0× 10−6 to 26.0× 10−6, with a spacing of 4.0× 10−6.
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7. CONCLUSIONS

A method is presented for numerically modeling the evolution of spilling breakers and
their shear flow wake beyond breaking where the resolved free-surface shape remains
smooth and connected and does not overturn. Filtering and modeling methods similar to
LES are applied to the equations of motion, taking into account the free-surface effect
by using boundary-fitted coordinates. The resulting LWS filtered equations depend on the
resolved scales of velocity, pressure, and free-surface elevation, as well as on eddy and
wave SGS stresses which are modeled. Surface tension effects are not considered in this
study; therefore, the method presented in this paper is limited to weak spilling breakers. In
the future, surface tension effects can be included by filtering the appropriate dynamic free-
surface boundary condition and modeling the SGS surface tension effect on the resolved
scales.

For the flows considered in this paper, the performed a priori tests show that the structure
of the mean eddy and wave SGS stresses is captured well by the constant eddy-viscosity
models presented, given the limitation that, as in LES, constant models cannot capture
exactly the actual SGS stresses everywhere. These tests conclusively show that a different
constant is necessary for the models of the eddy and wave SGS stresses, respectively; i.e.,
C 6=Cη. The corresponding a posteriori tests reinforce this conclusion, while also indicating
that, although the constant eddy-viscosity model is appropriate for modeling the eddy SGS
stresses, a dynamic model may be more appropriate for the wave SGS stresses.

The LWS implementation for the interaction of a gravity wave and a surface wake is
successful in simulating this flow past the breaking point where the large-scale features of
the flow are in qualitative agreement with experimental observations. In fact, after breaking,
a strong vortex develops in the wake of the breaker just beneath the free-surface. It is clearly
shown that this effect results from the inclusion of the appropriate wave SGS stresses as
the vorticity field for corresponding LES implementations (which neglect the wave SGS
stresses) does not demonstrate any vortex formation after breaking.

To improve the LWS models presented in this paper, experimental data should be analyzed
in order to provide a possible correlation between the wavelength of the postbreaking free-
surface perturbations and the mixing length associated with the eddy-viscosity model for
the wave SGS stresses. Furthermore, the simulations should be extended to include three-
dimensional effects to better capture turbulence evolution after breaking.
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