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A methodology, called large-wave simulation (LWS), is presented for the numer-
ical simulation of free-surface flows past the appearance of spilling breakers. LWS
is designed to resolve only the large, energy-carrying scales of the flow and model
the effect of the subgrid, small-wavelength scales of the flow spectrum. This part
of the spectrum includes the characteristic frothy whitecaps associated with spilling
breakers. Modeling in LWS is based on the consistent application of spatial fil-
tering on both the velocity field and the free-surface elevation. The subgrid scale
(SGS) effect is modeled by two sets of stresses: (i) the eddy SGS stresses, which
are identical to the ones arising in large-eddy-simulation of flows without a free
surface, and (ii) the wave SGS stresses, which incorporate the free-surface effect.
Both SGS stresses are modeled by eddy-viscosity models with constant coefficients.
The methodology is applied on two free-surface flows: (i) the interaction of a plane
gravity wave with a surface wake layer, and (ii) the nonlinear evolution of a surface
shear layer instability. A priori and a posteriori tests show good agreement between
the proposed model and actual SGS stresses, while LWS of both flows successfully
continue past the breaking point as opposed to corresponding direct numerical simu-
lations. For the first flow, LWS predicts the postbreaking appearance of arecirculating
flow region in the wake of the breaker in qualitative agreement with experimental
observations. © 2000 Academic Press

1. INTRODUCTION

In several problems, the evolution of free-surface flows leads to the developmen
steady or unsteady spilling breaking waves. Unsteady spilling breakers in the ocear
usually generated by wind or wave/wave interactions and play an important role in air/
interactions because they influence momentum and energy transfer from the wave fie
the underlying flow and are the major mechanism of wave energy dissipation [16]. Ste
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spilling breaking waves are usually found in the wave system of ships, where they cor
kinetic and potential energy from the wave system into turbulent kinetic energy in the wa
of the breakers. These turbulent breaker wakes are momentum deficient, like the wake
towed body [2, 7, 8]. Ship breakers are responsible for increased drag on ships [1] and
an important role in ship detection.

In all these problems, it is important to study the evolution of the wave field and t
underlying turbulent flow past the breaking point. In terms of numerical simulations
free-surface flows, though, most present methodologies are unable to numerically pr
the evolution of spilling breakers past the breaking point. The development of break
waves is associated with a continuous slope increase of the free-surface elevation towe
infinite slope and overturning, which causes floating-point problems to numerical meth
[5, 6] that require the resolution of all the free-surface flow scales during and after break
The most promising method, so far, has been the surface marker and micro-cell (SMI
method by Cheret al [3] that overcomes problems with free-surface overturnings but
also based on the requirement that all flow scales are resolved during and after a
breaking event.

In this paper, a very different approach is presented that eliminates the need to res
all scales for free-surface flows with spilling breakers. It has been observed in experim
[9] that, in the case of spilling breakers, the lengths and heights of the steep waves i
breaking region are very small compared to the spatially averaged free-surface elev:
(Fig. 1). This last observation leads to the idea of performing large wave simulations (LV
of spilling breakers past the breaking point, where only the large scales (velocity and f
surface elevation) of the flow are fully resolved while the effect of the small subgrid sca
is modeled without resolving their shape. Therefore, the concept of a large wave simule
is based on the consistent and systematic introduction of the large-eddy-simulation (L
methodology in free-surface flows. For free-surface flows, though, the physics of the p
lem is represented not only by the equations of motion but by the unknown shape of the
boundary as well. Therefore, use of filtering in the equations of motion only, as in LES
not consistent with the presence of free-surface waves. The free surface has to partic
in the filtering process.

A major advantage of LWS modeling of breaking is the naturally adaptive charac
of the model, since it is activated automatically by the dynamics of the resolved sc:
when breaking is about to occur. The close relationship between LWS modeling and |
modeling and the success of LES modeling in turbulent flows are positive indicators
the successful use of LWS in turbulent free-surface flows with spilling breakers. A deta
presentation of the methodology is given in the next two sections, followed by a descrip
of the numerical method in Section 4. A priori tests of the proposed model are presente
Section 5, while a posteriori tests and results from two LWS of a free-surface flow past
breaking point are given in Section 6.

Direction of Propagation

FIG. 1. Free-surface elevation decomposition for a typical spilling breaker. The lengths and heights of
subgrid scale waves at the breaking region are very small compared to the spatially filtered free-surfaceleva
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2. LWS FORMULATION

The LWS formulation is based on the consistent application of a spatial filtering operat
on all flow variables (velocities, pressure, free-surface elevation) in order to derive
equations of motion for the resolved scales. For any varidbligs resolved large-scale
componentf_is obtained by

f_(x,t)=/v f(r,t)é(x,r;A)dr, (2)

wherex andr are position vectorg,is time,V is the flow domainG is the filter function,
andA is the size of the smallest resolvable scale. Filtering of the velocity field, for examg
produces the following decomposition of the velocity components, =1, 2, 3,

Ui = Ui +uj, (2

whereu; corresponds to the resolved scale andorresponds to the unresolved subgric
scale. An equivalent decomposition is performed on the free-surface elevatiaameording
to

n=n+7, 3)

wheren corresponds to the resolved large-wavelength scale of the free-surface eleve
andn’ corresponds to the unresolved subgrid scale (Fig. 1). The free-surface eleva
is a function of two spatial coordinates, therefore, a two-dimensional filtering operati
equivalent to (1) is used.

For an incompressible, inviscid, free-surface flow, the equations of motion are the co
nuity equation

o

=0, 4
™ 4)
and the Euler equations
au; au; ap
— 4 uUj—=—-——, 5
at " Tax; X ®)

wheret is time, x; are the cartesian coordinateg,(xs are the horizontal coordinates;
is positive in the opposite direction of gravity, argl= 0 corresponds to the undisturbed
free-surface level)y; is the velocity field,p is the dynamic pressur@= P — (—xo/Fr?)]
defined as the difference between pressBr@nd hydrostatic pressure, and Fris the Froud
number of the flow. All variables have been rendered dimensionless by a characteristic
velocityU,,, and a characteristic length schl¢herefore, the dimensionless Froude numbe
is defined as F= U, /+/gb, whereg is the gravity acceleration.

The dynamic and kinematic boundary conditions on the free su¢face n(xz, X, t)),
respectively, are

Ui
P=rz (6)
dnp  9ny an

= = — 7
d ot | lax;’ %

uz
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where d/d is the material derivative operator. Surface tension effects are not considere
this study.

In the above formulation, the free-surface elevation is an unknown function of tin
which renders the flow domain time-dependent and complicates the computation of the
tering integral in (1). To overcome this problem, boundary-fitted coordinates are introdu
according to

X{ =X, X3 =Xo—n(X1, X3, t), X3=x3 t=t, 8)

wherex;, x5, andx3 are the coordinates in the transformed domain. The above transt
mation is intended to be used only for flows with infinite depth-6& —oo) without the
presence of solid boundaries. Derivatives are transformed as follows:

9 9  an 9 9 9 9 9 on

proglr i v U vl v SR T R L
9 9 9

At ot atraxg

©)

At this point, no transformation is attempted on the dependent variables (velocity :
pressure) in order that they be filtered in their physical form.
Then, according to (8) and (9), the continuity and Euler equations, respectively, bec

au; auy an dus dan

————— —— =0 (20)
X" OX3 Xy  OX5 OX3
ou; oau; ap
- 1 H=—— 11
ot TV T T Tk (11)
where
i i i 0 ap 0
H — U 8_)7 au; an oau; an p 9an (12)

u u y
Yoxz oxt T Cox:ox: | 9xiatt | axi axt
2 1 2 3 2 2 i

while the dynamic and kinematic free-surface boundary conditions, (6) and (7) respectiy
become

n

_ 13
P=Fe (13)
dn  an an

Up=— = — + U
27 A ot ax;

(14)

and are applied at; =0. With this formulation, the transformed free-surface boundar
and hence the flow domain, are not functions of time, while the influence of the free-surf
elevation on the physics of the flow introduces new terms in the transformed equatior
motion.

The governing equations for the resolved scales are obtained by applying the filte
operation (1) to the transformed equations of motion. In this paper, two-dimensional fl
(on thex; — X, plane) are considered; therefore, for clarity of the exposition, only the tw
dimensional formulation will be presented in the rest. The filtered continuity equation i

Uy dup AUy 9y 9B

+— =0 15
oXy 09X OX3 00Xy  0X5 (15)
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where
on  _ on
—u . 16
p= IX] laxi‘ (16)
Similarly, the two-dimensional & 1, 2) filtered momentum equations are
i o -  _ ap  dn; Ot
o —i—U] i H| Ny ,3 _ [1 _ |i |f’ (17)
ot* axj ax2 9X; Xy 9%;
where
— _du an Au; an  Ap In
i =4 :; n* jk_n p* n*’ (18)
0X5 0Xy  OX5 ot* ~ 9X5 0X;
Tij = UjU; —ljiLTj (19)
and

on __ an n on o
T = (Uujup— — uju U— — U — — 20
fiz ( X axi“> +( o Yo ) T\ Pax pax* (20)

The eddy SGS stress;, corresponds to the effect of the unresolved velocity scale, whi
the wave SGS stress), corresponds to the combined effect of both the unresolved veloc
and free-surface elevation scales. Note that, by definitipris a symmetric tensor, while

u is not since it has nonzero values only in the gravity direction. Due to their depende
on unresolved scales, both SGS stresses have to be modeled. All other terms of the fil
momentum equations (17) are functions of the resolved velocity and free-surface eleve
scales, includingH;.

The filtered dynamic and kinematic free-surface boundary condition§ éaD), respec-

tively, become

—n

= 21
P=Fe (21)
o _ay
Up=—+uU . 22
2=t 18x’{+’3 (22)

The SGS stresses;; and r,], will be modeled according to the models presented i
Section 3, while the subgrid terg that appears in Egs. (15), (17), and (22) is set equi
to zero because a priori tests of the flows considered in this paper show this term t
negligible.
Transforming back to the physical domain by usifg= x; andx; = xz + 1, the filtered
continuity equation becomes
du; duy IB

L _ T _0 23
3X1+8X2 0X2 ( )

while the two-dimensional filtered momentum equations become

Ui A _8,3 85 81:.J+ 0 <,] 877)

—_— Uj— T Ti1—
at TUax T T Tax  axg | axe\ 02T

ax1 (24)
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Note that these equations are not directly deduced by filtering the original Egs. (4) anc
without the intermediate application of the boundary-fitted transformation. Therefore,
free-surface flows, a consistent filtering requires first the application of a boundary-fit
transformation to include the free-surface effect in the equations of motion. With the rr
simple boundary-fitted transformation chosen in this paper, the effect of the free-sur
elevation introduces the underbraced term of the momentum equations (24). More corn
transformations will result in more complex forms of this term, depending possibly
higher derivatives of the free-surface elevation and requiring more complex models t
the ones presented in the next section.

3. SGS STRESS MODELS

Since the equations of motion derived in the previous section have to be solved only
the resolved scalesi(, 1), the SGS stresses;(, ri’]-’) should be modeled as functions of
the resolved scales.

In LES computations, only the eddy SGS stregs|s present and can be modeled using
eddy-viscosity models [17] according to

nj = —2u1S; = —2C2A%|§S;, (25)

whereC is a model parameteny is the length scale related to the filter width (see below
and|S| = (2S; Sj)¥2 is the magnitude of the resolved-scale strain-rate tensor:

< _ l/ou  au;
Si = 2<8x}‘ + axi*>' (26)
The filter width A is defined by
A = (A A)Y?, (27)

whereA; is the grid spacing in thigh direction.
In LWS, according to (20), the wave SGS streﬁ'j&, is dominated by triple velocity/
velocity/free-surface-elevation correlations of the form

on __ on
Uil — — Ujug—, 28
vl 3XI iyl 3XI ( )

which are expected to be high inthe region just beneath the breaker face where the turbu
intensity and the free-surface slope are the highest during and after breaking. Therefol
this paper;i’} is also modeled using an eddy-viscosity model and is correlated to a modif
resolved-scale strain-rate tensor, which incorporates the free-surface elevation effect i
form
an

—_—, 29
X (29)

o7 A
Tij = —2%3’}37; = —2C]A%|S][§]

whereC, is a model parameter and the modified large-scale strain-rate tensor is

—  0up — 1/0u; dup
S'172_8x1" $2_2<8x§+axi“

>, S, =0. (30)
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Apart from (28), the wave SGS stress is also influenced by the term

on  _ on

Uj ﬁ — Ui ot (31)

Using the kinematic free-surface boundary condition (14), the above term (31) becom

an
0 9XF

9 _
74 Uiz, (32)

Ui Uz‘x;:0 — U Uzlxz*:0 — U Ul‘xz:oaf)c1k
and can be modeled similarly to Egs. (25) and (29). Only the deviatoric part of the S
stress tensors in (25) and (29) is substituted in the momentum equations (17) becaus
isotropic part is absorbed into pressure.

Physically, one can think of the wave SGS stresses as the vertical force applied or
resolved scales by the subgrid wave fluctuations as they fall down the front of the spill
breaker. This force adds a shear component ixthemomentum direction and a normal
component in thex; momentum direction, as shown in Egs. (17) and (24). It should t
clarified, though, that modeling of the SGS stresses does not, by itself, constitute mode
of the breaking process; it must be combined with the contribution of the resolved sc:
dynamics.

The parameter€ andC, can be either constants, like the Smagorinsky model in LE!
or functions of time and/or space, in which case they can be evaluated using, for exan
a dynamic eddy-viscosity model [11]. In this paper, as a first step in LWS modeling, ol
constant parameter values are considered in order to demonstrate that an eddy-visc
model for the wave SGS stresses (which are unique to LWS) is at least as accurate
eddy-viscosity model for the eddy SGS stresses (which are common to LWS and LES

4. NUMERICAL IMPLEMENTATION

The numerical methodology used in this paper employs an operator splitting schem
the temporal integration of the equations of motion, and spectral methods for the sp
discretizations, with Fourier modes in the streamwise direction, and Chebyshev mode
the vertical direction [5].

All unknown flow variables are represented by

N
Ix; 2X5
FOg g th=> > fm(t*)exp(Zm)é;)Tn( ;2 +1), (33)

|ll<L n=0

where 2 is the number of Fourier modes in tig direction over the range{B/2, B/2],
N is the number of Chebyshev modes in #jedirection over [ —D], and T,(s) is the
Chebyshev polynomial of order, defined in the 1, +1] range.

To further simplify the numerical solution of the equations of motion, a flow variabl
transformation is introduced,

<l
[

Il

<l
=

<l
N %
I
Sl
N
|

(34)

©
*

[
ol
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by which the continuity Eq. (15) becomes

ou*
=0 35
ax* (35)

and the filtered momentum Egs. (17) in rotational form [6] become

ou; _, ol1  ap* an  dmj 0Ty

L w— p- dn o T12 (36)
ot* OX] 0%z Xy OX] 0%
au} _ o &y 0ty Aty

2= Wo— - oL+ 2, (37)
ot* dxy dtr2 ax; %3

wherell = p* + %(L_q)z + %(J;)Z is the dynamic pressure headis the vorticity (a scalarin
two-dimensional flows) of the resolved flow field artfdt*? is the second-order material
derivative.

With this flow variable transformation, the boundary conditions on the free-surface
come

Rk )7 e
= —, U = 0, 38
p Frz 2 ( )
while asx; — —oo0,
Tk —x d?’]_ %
u; — U, u, —> Ta — 0, (39)

whereU, is the free-stream flow velocity. For the numerical implementationxheo-
main is truncated at a sufficient deptd, so the previous boundary conditions (39) are
implemented ax; = —D.

The numerical solution of this new form of the momentum equations is carried out us
a fractional time step method. At the first stage of each time step, the nonpressure, nonl
terms of Egs. (36) and (37) are treated explicitly,

@™ =@ _ (g, dmi ) (40)
At 2T axg
(@)™ — @y)" I TR AL
= —u* —_——_— = s 41
At W T ax T o (+1)

where the superscrim, denotes the current time step numligrare the first intermediate
velocities, andAt is the time step.

At the second stage of each time step, the pressure terms of the momentum Egs.
and (37) are treated implicitly using a predictor—corrector iteration method which itera
on the pressure heaH, The second set of intermediate velocities is defined,

an

n
)

@omt — (@™t = At(

()0t — ()™ =0,

ap*

42
X5 (42)

(%)..

(43)
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where the subscriptn, denotes the current predictor—corrector iteration number. For t
special case ah =1, the pressure value from the preceding time step is used in Eq. (4:

At the third and final stage of each time step, the velocity field at the next time stey
obtained by

@)™ — @pt (an)“+1 44)
At o\,

usn+l G n+1 oIl n+1

(u3) O)n™ _ (45)
At X3 ) m

By combining Egs. (44) and (45), and applying the continuity equattarf,/x;)"t1 =0,
a Poisson equation is obtained far

9211 92 \"™*t 1 /a0 \"M?
FEEE A TE

X2 axi2 ), A\ ax* ),

which is solved using the tau method to account for the pressure head boundary condit
These conditions are the free-surface boundary condition,

7,1 5\"
g = (4 @) | @)
obtained from Egs. (38), and the boundary conditiorjat —D,

n+1
(an)* =0, (48)

*
X5 ) m

obtained from Egs. (37) and (39).
A new estimate of the pressure tefrp*/9dx; is found from the current estimate of the

pressure head
apr\™t  sam\"  /_oam  _ ous\"
Py = —(mEEpmez) (49)
%5 ) m X3 ) m X5 X5

which in turn yields a new estimate for the second intermediate veloafl;ieapcording
to (42). Then, a new value fdi?+! is computed using (46). The error for each corrector-
predictor iteration step is measured as

e = max Tty — Y. (50)

An estimate of the pressure head is accepted as the final pressure head for a giver
step(n+ 1) when the error measure is below a prescribed threshokebr all numerical
simulations presented in this paper, the valee10-° is used.

The resulting pressure hedd?+2, is used to determine the velocitig("*2, at the next
time step using Eqgs. (44) and (45). Finally, the boundary condition (39) is applied to sc
for the free-surface elevation at tire+ 1) time step:

877 377 n+1 _ n+1
<3t* + U axik) = - <U2X;:7D> . (51)
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The global time-accuracy of this numerical scheme iat(Although the local error
for each stage of the time step is of higher order, the accuracy for each full time ste
lowered because the operations involved in the three stages do not commute.

5. APRIORITESTS

In this section, a priori testing results are presented where the predicted modeled
stresses are compared to the actual SGS stresses for two free-surface flows.

For the flows presented, the results of two-dimensional direct Euler numerical simulati
(DENS) are used to compute both the actual SGS stresses, according to Egs. (19) anc
and the modeled SGS stresses, according to Egs. (25) and (29). The numerical method
for the DENS is the same with the one described in the previous section apart from the
that the SGS terms are not present. The resolved velocity componeatsiu,, and the
resolved free-surface elevatiom, are obtained by retaining only a portion of the DENS
Fourier modes according to the following sharp Fourier cutoff filter,

1 if K < Kmax

0 if k> Kmax (52)

GK) = {
wherekmax=/A; is the highest wavenumber resolved. In wave space, the convolut
equation (1) simplifies td (k, x5, t*) = G(k) f (k, x5, t).

For clarity of the a priori comparisons, the eddy and wave SGS stresses are prese
after they are averaged and scaled according to the following definitions:

<T(i?)Jr31ax - maxj[[r%?zl;?tjt*]xg (53)
Y 0 gkt +
<T<:I)Jn>1ax - max{[T%?Z;?Lt*]xg’ (54)
where
Tij = (Ui — (U)(Uj — (uj)) (55)

are the Reynolds stresses of the flow. In Egs. (53) and (54), the scaling factor is the maxil
value over depthd; direction) of the appropriate averaged Reynolds stress. All SGS stres
are scaled with respect to the Reynolds stresses of the flow in order to reveal their size
therefore significance, with respect to the large-scale dynamics of the flow. In this papet
smallest resolved scale was chosen so that the SGS stresses are always of order not
than about 10% of the corresponding Reynolds stresses.

5.1. Gravity Wave and Surface Wake Interaction

The first flow to be considered involves the interaction between a plane gravity wave
a two-dimensional parallel wake flow.

Experiments [15] have investigated the free-surface breaking conditions of such a w
shear interaction using the following configuration in a towing tank: a submerged mov
hydrofoil is used to generate a steady gravity wave, while a thin Mylar sheet is drag
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N\_/

- T

U

FIG. 2. Experimental setup for gravity-wave/surface-wake interaction. A submerged hydrofoil with spe
U, generates a steady gravity wave, while a thin Mylar sheet dragged along the surface with identical.spee
generates the surface wake. The wake velocity profile is presented from a frame of reference moving with vel
U

Us
e

along the surface to generate the surface wake (see Fig. 2). Both the submerged hyd
and the sheet move with spebdd, =80 cm/s. This flow was also studied by DENS [15]
using, initially, a two-dimensional parallel shear flow to model the sheet wake, and a pl
gravity wave to model the hydrofoil wave. The DENS results are used for the a priori te
in this paper.

The initial velocity profile of the parallel shear flow corresponds to the mean veloc
profile measured in the wake of the Mylar sheet at a streamwise distance correspon
to the location where the free surface crosses the mean water level just upstream
wave crest. This profile, in the frame of reference moving with velddity is fitted by the
dimensionless expression,

ui(x2) =1 —q(l —tantf(oxz)), q=1— LLJJ—O (56)
whereU,, is the free-stream velocity (equal to the hydrofoil and sheet spedg$3,the
free-surface velocity and is a fitting parameter. The parameters considered in this stu
areq=0.3 ando =0.88137, and the corresponding velocity profile is displayed in Fig.
Note that the characteristic length scde of this flow is the half-width of the velocity
profile (56) corresponding to the dimensionless degtk —1, whereu; = (U, + Uy) /2.

- 5 L L L I

0.50 0.60 0.70 0.80 0.90 1.00
U,

FIG. 3. Dimensionless velocity profile for shear flow (56) wijk= 0.3 ando = 0.88137.
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The plane gravity wave, which defines the initial free-surface elevajiasrepresented
by a second-order Stokes wave with dimensional wavelengtl2rU2 /g, according to
linear theory, and dimensionless amplitude

1
1t = 0) = & coskx) + Ska? cos2kxy), (57)

where the dimensionless wavenumibeqf the gravity wave is related to the Froude numbe
of the flow according to

2rb  gb 1
k: _——— e = =, 58
A UZ R (58)

For the first a priori tests presented, the case witk Bi6 and amplitude: = 2.33 (ko =~
0.18) is considered, which experiments show corresponds to a weak breaking wave
steepness (waveheight/wavelength) very close to the incipient breaking condition [15]
incipient breaking wave is defined as a nonbreaking wave for which even a slight incre
in steepness will cause breaking. The DENS results indicate that the wave begins to t
at aboutt = 70. The amplitude of the wave at this time corresponds to the experiment:
measured wave amplitude at its breaking point [15]. For the DENS, a time step of 0.00
was used, with 64 Fourier modes in thjedirection B = 2z Fr? = 81.43) and 64 Chebyshev
modes in thes; direction O = 40).

In order to define the filtered velocity componentsandu,, only the first 24 low-order
Fourier modes and all 64 Chebyshev modes are retained. The actual eddy and wave
stresses are computed according to Egs. (19) and (28), and scaled as described in Eq
and (54). The modeled eddy and wave SGS stresses are computed according to Eq¢
and (29) and similarly scaled.

The scaled mean of the actual and modeled eddy SGS strggsand of the actual and
modeled wave SGS stressq%,, are displayed in Fig. 4. The eddy SGS componegiis not
plotted since,, = —111. The solid lines indicate the scaled mean of the actual SGS stres:
while the symbols indicate the scaled mean of the modeled SGS stresses where the \
of C andC,, are provided by the best fit in the least squares sense [12]. This constant of
fit is allowed to vary between stress components. In these figures, it is shown that the ¢
features of the actual SGS stresses are captured by the a priori modeled SGS stresses
appropriate eddy-viscosity constant. This is especially true in the case of the shear str
(r12 andt,), which are at least one order of magnitude more significant than the norr
stressest; andt),). This relative size difference between the various stress compone
indicates that the shear SGS stresses have a larger impact on this flow. Different mode
used forg; andri'}; therefore, it is appropriate to have different constants for each mod
thatis,C # C,.. However, the eddy-viscosity constant can not vary between the compone
of 7j; andri'}. In this case, where the shear eddy SGS stresses are more significant tha
normal eddy SGS stresses, it is more important that the corGtaatappropriate fot;,,
as long a<C does not significantly increase the magnitudeqfand ;. This is also the
case for the consta@t, when modeling the shear wave SGS stresses.

A second set of a priori tests was performed on the same flow with a different w:
amplitudeo = 2.59 (ko ~ 0.20). This is a flow where the experiments by Milkdral. [15]
show that wave breaking is strong. The DENS computational parameters are the sar
in the previous example. Figure 5 displays the scaled mean SGS stresses for this
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where the values of andC, vary for each stress and are provided by the least squa
fit to the actual stress. The a priori model captures well all the stresses, regardless of
comparative size.

When observing the values f@ andC, provided by the least squares fit for both case
presentedd = 2.59 and « = 2.33), it is interesting to note that the best fit values for th
largest eddy SGS stresses of each c@se0.10 andC = 0.03, are of the same order with
the traditional Smagorinsky constant valued# 0.18. The best fit values for the largest
wave SGS stresses of each caSg=1.13 andC, =0.69, are one order larger than the
Smagorinsky constant. Therefore, both of these a priori test cases indicate that the b
to the actual SGS stresses is achieved when the constaantsiC, are allowed to have
differing values; that isC # C,,.

5.2. Shear Layer and Free Surface Interaction

The second flow addressed is the evolution of a two-dimensional, parallel shear flow
an initially flat free surface. The nonlinear growth of the instability of this shear flow a
its free-surface manifestation develop spilling breakers due to an increasingly steep
surface slope with a small amplitude. This flow has been studied by Dimas and Triantafy
[6], who show that DENS is unable to continue past the breaking point. No experimel
measurements are available for this flow.

The initial dimensionless velocity profile of the shear flow is the same as in (56), witl
different value folg, and is displayed in Fig. 6. The parameter values used0.9988 and
o =0.88137, correspond to a velocity profile measured in the near-wake of a NACA-0(
hydrofoil in unbounded fluid [14]. The Froude number isH0.5.

For the DENS, a time step of 0.004 was used, with 64 Fourier modes along tlie
rection B =2n/k =157, wherek=0.4 is the wavelength of the most unstable wave)
and 48 Chebyshev modes in thg direction (D =12). At timet =0, a small amplitude
disturbance is applied to the flow; the linear instability wave associated with this dis
bance defines the initial free-surface elevation and wavelength. For the a priori compute
of the modeled SGS stresses, only the first 16 low-order Fourier modes are retaine
define the filtered velocity componenis, and u,, while all 48 Chebyshev modes are
retained.

- 5 1 1 L 1

0.0 02 04 06 08 1.0
U,

FIG. 6. Dimensionless velocity profile for shear flow (56) wigk=0.9988 anc = 0.88137.
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The a priori tests are displayed in Fig. 7. All of the eddy SGS stresses are captured
by the model, even though there is a large relative size difference between the sheal
normal stress components. The DENS data was insufficient to provide a good measu
the actual wave SGS stresses, but the gross characteristics are captured by the mc
wave SGS stresses. In this flow, as opposed to the results of Section 5.1, the shear edd
stress is one order larger than the shear wave SGS stress, indicating that eddy SGS st
are more significant than wave SGS stresses with respect to the large scales of the
One possible explanation for this is that the wave steepnreB9006) is small, whereas
the steepness for the weak breaker of Section-5AL{6) is much higher. Since the model
captures well the more significant eddy SGS stresses in this case, it is a good indicatior
the constant eddy-viscosity model employed for these stresses is appropriate. Further
an LWS implementation of this flow [4] was successful in avoiding the DENS probler
and continue the simulation past the breaking point. These results are not presented h
order to avoid repetition.

6. LWS OF SPILLING BREAKERS

In this section, the results of LWS and LES implementations for the interaction o
gravity wave and a surface wake are presented. The LWS implementation models |

the eddy and wave SGS stressgsand ti'j’, while the LES implementation incorporates
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a model only for the eddy SGS stress, and neglects the wave SGS stregs, The
flow domain, initial velocity profile, and initial free-surface elevation are as described
Section 5.1 and shown in Figs. 2 and 3. The spatial discretization for all cases was ca
out as described in Section 4, Eq. (33), with 24 Fourier modes intligrection and 64
Chebyshev modes in the direction. Apart from any LWS physical modeling advantage:
the lower number of modes used for the spatial discretization ixthigrection offers a
considerable computational time savings over corresponding DENS implementations.
The LWS and LES are implemented with= 2.33, wherex is the amplitude of the grav-
ity wave in (57), which corresponds to the weak breaking wave considered in Section
Several combinations & andC, values are considered in order to examine their effect
the large scale dynamics of the flow. An additional LWS is implemented for the case v
o =2.59, which corresponds to the strong breaking wave of Section 5.1. All LWS and L
implementations presented here were successful in simulating the two-dimensional -
surface shear flow beyond the formation of breaking waves but with differing large-sc
flow features. The results presented in this section will provide insight to the long-term ap
cability of LWS in terms of extension to more general three-dimensional free-surface flo

6.1. A Posteriori Tests

For the case witly = 2.33, a posteriori tests are carried out in which the modeled ed
and wave SGS stresses output from the LWS are compared to the actual and the
ori predicted SGS stresses, which are both computed from the DENS results. All
stresses (actual, a priori and a posteriori) are averaged and scaled according to Egs. (5
(54).

The a posteriori comparisons are carried out for two LWS rahs:0.03, C, =0.69;
andC =C, =0.22. The first set of constants corresponds to the a priori best fit for e
stress tensor, while the second set corresponds to the a priori best fit under the conc
that the two constants are equal. The latter set is considered in order to enforce ¢
priori conclusion that best results are achieved, in general, when the two constants ar
equal. The results for the more significant shear SGS stresses are shown in Figs. 8 ¢

0 T 0 T
-2+ 4 -2t ]
g 3
& -6t 18 =61 E
-8 — actual B iy al 4
o a priori o a priori
% a posteriori B % e posteriori
—-10 N B \ -10 2 | 1
-0.50 -0.25 000 0.25 0.50 -0.5 0.0 0.5 1.0 1.6

Mean SGS stress, <T;>/<T>pux10* Mean SGS stress, <7";>/<Tp>pux10?

FIG. 8. A posteriori comparison tests of scaled mean SGS stresses for the gravity-wave/surface-wake |
action ¢ = 2.33); modeled stresses are results from LWS implementation@vit0.03 andC, = 0.69.
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FIG. 9. A posteriori comparison tests of scaled mean SGS stresses for the gravity-wave/surface-wake i
action (= 2.33); modeled stresses are results from LWS implementation@4tC, = 0.22.

respectively. The agreement between a priori and a posteriori scaled mean SGS stres
good, showing that the a priori tests have provided a good means for estimating the ve
of C andC,. The first set of constants, though, presents a better agreement betweer
actual and the a posteriori SGS stresses than the second set.

Interms of the first set of constan & 0.03, C,, = 0.69), the a posteriori shear eddy SGS
stressyio, agrees very well with its corresponding actual stress, indicating that a cons
eddy-viscosity model is appropriate for this term. On the other hand, the a posteriori sl
wave SGS stress,,, does not show as good an agreement with the actual. This lack
agreement indicates that a dynamic eddy-viscosity model may be more appropriate
modelingz] in this case.

Another set of a posteriori tests are carried out for the caseadtt?.59. This LWS
implementation was carried out with= 0.10 andC, = 1.13, constants which correspond
to the a priori best fit for each stress tensor. The results, displayed in Fig. 10, show @
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FIG. 10. A posteriori comparison tests of scaled mean SGS stresses for the gravity-wave/surface-wake |
action = 2.59); modeled stresses are results from LWS implementation@vt0.10 andC, = 1.13.
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agreement between the a posteriori shear eddy SGS stygsa(d the corresponding actual
stress. Once again, the agreement is not as good for the shear wave SG3/stress,

6.2. Flow Characteristics

To examine the large scale features of the flow, the weak breaker case wigh33
is considered first. The evolution of the free-surface elevation from the DENS and
corresponding LWS witle = 0.03 andC,, = 0.69 are shown in Figs. 11 and 12, respectively
In these figures, the free-surface elevations are stacked in time: they are plotted evéry d
time units with a shift along the axis of d; = 0.5 per rendering.

The DENS results present a sharp steepening of the free-surface elevation where the
crest develops a bulge shape on its forward face. This shape is similar to that found in g
short-wavelength spilling breakers (see [10]). The point of maximum upward curvat
at the leading edge of the bulge is called the toe. In the LWS case, with only 24 Fou
modes, this steepening is not resolvable, therefore, only the large wave scales of the
surface shape are rendered beyond breaking. This result is also evident in the behav
the minimum and maximum free-surface slope over time: for the LWS, the slope envel
is fairly flat, while for the DENS, the envelope expands substantially after the break
point (t ~ 70). The free-surface steepening and the subsequent bulge formation just be
the breaking point are the characteristics which lead to the numerical problems with DE
of spilling breakers presented in the next paragraph. The grid size is insufficiently |
to resolve the sharp free-surface shape at the toe of the bulge. The LWS overcome
numerical difficulties associated with the DENS of a breaking wave by resolving only 1
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FIG. 11. The evolution of the free-surface elevation and the corresponding minimum and maximum of
free-surface slope from the DENS of the gravity-wave/surface-wake interaction.
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FIG. 12. The evolution of the free-surface elevation and the corresponding minimum and maximum of
free-surface slope from the LWE & 0.03, C, = 0.69) of the gravity-wave/surface-wake interaction.

gross characteristics of the free-surface elevation and not the sharp steepening of the
nor the postbreaking small fluctuations at the forward face of the breaker. A hint of th
postbreaking small fluctuations is evident in Fig. 13, where the difference between
DENS free-surface elevation and the filtered DENS free-surface elevation is plotted.
filtered result is found by a posteriori filtering the free-surface elevation resulting from 1
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FIG.13. Thedifference betweenthe DENS free-surface elevation and the filtered DENS free-surface elev:

fromt =30 tot = 110. The wave breaking point is t= 70.
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FIG. 14. \Vorticity contours from DENS and LWS wit@ =0.03 andC, = 0.69 at timet = 100. Solid lines
represent negative vorticity, dashed lines represent positive vorticity, and contours are at equal intervals
—0.166 to 0.002, with a spacing of 0.012.

DENS down to 24 Fourier modes. In Fig. 13, the difference between free-surface elevat
is plotted every tI=10 time units fromt =30 tot =110, with a shift along the axis of
dn = 0.05. The small fluctuations are most evident right after the breaking gain? Q).

Interms of the underlying flow, the DENS results show the development of a numerica
stability in the vorticity field close to the free surface at atime which coincides with the inc
ient wave-breaking event (Fig. 14). Itis shown [15] that this instability, displayed as the |
physical lack of smoothness in the vorticity contours, is related to the sharp shape of
free surface at the toe of the bulge that cannot be resolved with any finite number of mc
Obviously, beyond this point the DENS results are not accurate. The vorticity conto
from the corresponding LWS run (Fig. 14) are all smooth, and display a weak formatior
vortices which are characteristic of the postbreaking behavior of spilling breakers.

In order to study the effect of SGS stresses on the postbreaking flow evolution,
eral LES and LWS implementations of the weak breaker case are performed. For
effect of eddy SGS stresses, LES computations were carried out for three different e
viscosity constant values: the traditional Smagorinsky valzsf0.18, as wella€ = 0.22
andC =0.12(C, =0 for all LES). The free-surface elevations and the vorticity contou
are very similar for all these runs, indicating that the value of the eddy-viscosity c
stant betweel€ =0.12 andC =0.22 does not have a strong effect on the dynamic fe:
tures of the flow. The only difference between these runs is an increasing dissipe
effect with increasing values o€ due to the diffusive nature of the eddy SGS stres
model.
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FIG. 15. Vorticity contours for the weak breaker & 2.33) at timet = 140 from LES withC =0.18, LWS
with C=C, =0.22, and LWS withC =0.03, C, =0.69. Solid lines represent negative vorticity, dashed lines
represent positive vorticity, and contours are at equal intervals 066 to 0.002, with a spacing of 0.007.

For the effect of the wave SGS stresses, first an LWS computation is considered
C=C,=0.22, and is compared to the LES run with=0.22. Although the results are
not identical, there is no significant change in the free-surface elevation nor the vorti
contours from those of the LES computations. Then, the LWS computatiorOatl0.03
andC, =0.69 is considered. These values correspond to the best fit values for the e
and wave SGS stresses from the a priori tests in Section 5.1. As with the previous LWS
(C =C,, =0.22), there is no significant change in the character of the free-surface elevat
However, there is a significant difference in the vorticity structure well beyond the break
point.

Figure 15 shows the vorticity contours of a typical LES and the two LWS impleme
tations att =140, which is well beyond the breaking point. The LWS with the a priol
suggested eddy-viscosity constarfs=£0.03, C, = 0.69) displays the presence of a new
vortex at the forward face of the breaker which is qualitatively similar to the characteris
recirculating flow region in the wake of spilling breakers [13]. This structure in the vortici

contours is not present in any of the other results, which displayed only a purely dissipa
behavior.
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FIG. 16. \Vorticity contours for the strong breakes £ 2.59) at timet =140 from LWS withC =0.10,
C,=1.13. Solid lines represent negative vorticity, dashed lines represent positive vorticity, and contours a
equal intervals from-0.166 to 0.002, with a spacing of 0.007.

A similar LWS computation is considered for the=2.59 case, which corresponds to
a strong breaking wave. For this case, the valDes0.10 andC, =1.13 are used, which
correspond to the best fit values from the appropriate a priori tests in Section 5.1. Figur
shows the vorticity contours from this LWStat 140, where the presence of a new vorte
can also be seen. In this case of strong breaking, the DENS computation breaks ¢
soon after the breaking point. Without accurate DENS beyond the breaking point, fur
guantitative comparisons are needed between the LWS results and future experimental
In terms of the LWS modeling, the appearance of the breaker vortex in the two LWS res
(¢=2.33 C=0.03, C,=0.69; ande =259, C=0.10, C,, =1.13) is probably due to
the anisotropic character of .

Finally, the kinetic energy transfer between resolved and subgrid scales is considere
the LWS case withr = 2.33 andC = 0.03, C, =0.69. The equation for the evolution of
the resolved scales kinetic energy can be easily derived from Eq. (17) to be

L LI L T
5 —UiRj = —U;

T 85 __B‘Cij +63Ti7]2
2 g+ axy ot axy T axg

(59)

where the underbraced terms represent the SGS transport, i.e., the total transfer of e
between resolved and subgrid scales.

The instantaneous distribution of the wave SGS transpgit;}/9x;, is displayed in
Fig. 17 for time instances well before, during{ 70), and well beyond breaking. These
plots show that the peak of the wave SGS transport activity: (1) is positive (transfer fr
subgrid to resolved scales), (2) takes place within a short time just before, during, and
after breaking, and (3) is located in the region underneath the spilling breaker face. All tf
coincide with the appearance and location of the small-scale fluctuations associated
the breaking process. Although these scales are not resolved, their effect is modeled
matically by LWS. A representative instantaneous distribution of the eddy SGS transy
—U;d7j /9x}, att =60 is shown in Fig. 18, using the same contour levels as in Fig. 17. It
concluded that during breaking the kinetic energy transfer is dominated by the wave ¢
transport.
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7. CONCLUSIONS

A method is presented for numerically modeling the evolution of spilling breakers a
their shear flow wake beyond breaking where the resolved free-surface shape ren
smooth and connected and does not overturn. Filtering and modeling methods simil:
LES are applied to the equations of motion, taking into account the free-surface ef
by using boundary-fitted coordinates. The resulting LWS filtered equations depend or
resolved scales of velocity, pressure, and free-surface elevation, as well as on eddy
wave SGS stresses which are modeled. Surface tension effects are not considered i
study; therefore, the method presented in this paper is limited to weak spilling breaker
the future, surface tension effects can be included by filtering the appropriate dynamic f
surface boundary condition and modeling the SGS surface tension effect on the resc
scales.

For the flows considered in this paper, the performed a priori tests show that the struc
of the mean eddy and wave SGS stresses is captured well by the constant eddy-vist
models presented, given the limitation that, as in LES, constant models cannot cay
exactly the actual SGS stresses everywhere. These tests conclusively show that a dif
constant is necessary for the models of the eddy and wave SGS stresses, respectivel
C # C,.. The corresponding a posteriori tests reinforce this conclusion, while also indicat
that, although the constant eddy-viscosity model is appropriate for modeling the eddy ¢
stresses, a dynamic model may be more appropriate for the wave SGS stresses.

The LWS implementation for the interaction of a gravity wave and a surface wake
successful in simulating this flow past the breaking point where the large-scale feature
the flow are in qualitative agreement with experimental observations. In fact, after break
a strong vortex develops in the wake of the breaker just beneath the free-surface. Itis cl
shown that this effect results from the inclusion of the appropriate wave SGS stresse
the vorticity field for corresponding LES implementations (which neglect the wave St
stresses) does not demonstrate any vortex formation after breaking.

Toimprove the LWS models presented in this paper, experimental data should be anal
in order to provide a possible correlation between the wavelength of the postbreaking 1
surface perturbations and the mixing length associated with the eddy-viscosity mode
the wave SGS stresses. Furthermore, the simulations should be extended to include
dimensional effects to better capture turbulence evolution after breaking.
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